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Abstract. We investigate the binding energy separation between the many-body ground-state 
singlet and higher-lying magnetic states for the f'-f Anderson model to next-leading order 
in the 1 f N  expansion, where N denotes the orbital degeneracy of the f states. We formulate 
inlegnl equations for the magnetic-state ampliludes that appear at next-leading order in I / N  
and salve these, together with the inte5al equations that describe the singlet, oumerically. We 
find that the tobl separation bemeen magnetic and singlet slates is small. even in the valence- 
fluctuation repime, and hence demonstrate the robustness of the leading-order result. We find 
that the maximum binding-energy separation is shified towards higher valence, in contradiction 
10 results of the minimal-degeneracy model. We also piwent results for the valence and charge 
susceptibility. 

1. Introduction 

Among the many aspects of correlated electron systems that attract current attention, 
the heavy-fermion state in certain rare-earth and actinide systems continues to perplex 
investigators. In spite of the progress made in understanding the single-impurity problem, 
there are, even without including intersite effects, still features of the extreme dilute alloys 
that require clarification. In particular the extension of the Anderson model to the case 
where both of the two lowest-lying configurations possess magnetic moments provides a 
particular challenge. The majority of the early work on this problem has been concerned 
with the case where the conduction electrons have only a spin-4 degeneracy [l] while 
the magnetic atomic configurations have a greater number of internal degrees of freedom. 
Numerical renormalization group [2] and Bethe ansulz [3] solutions of this problem show 
that the ground state possesses a magnetic moment (see [4] for a review). 

At present much attention is being focused on the 'opposite' limit, where the 
conduction electrons have more internal degrees of freedom than the local moments, and 
an 'overscreened' ground state, with power-law dependences of the bulk properties on 
temperature, is the result. Such a situation arises when the P state is split by crystal 
fields so that a nonmagnetic doublet is obtained, which then undergoes quadrupolar charge 
fluctuations into the higher-lying I'6 state [5]. One system that shows such non-Fermi- 
liquid-like behaviour is WPd3 [61. 

At the same time a variety of models exist in which electron and impurity states of the 
same symmetry mix, and in this case the L-S or j - j  coupling scheme is more appropriate 
[7]. A highly idealized model is to take the j - j  coupling scheme, but without any actual j - j  
coupling [SI. This model then consists of (N = 2j + 1)-fold degenerate. local states (either 
singly or doubly occupied) mixing with an N-fold degenerate electron band. The advantages 
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of this model are that it allows an expansion of ground-state properties in powers of 1/N and 
allows a systematic study of the effects of successively adding electron-hole pair processes. 
Even if N is not large, the issue is the extent to which this treatment captures the essential 
physics of the hue finite-N ground state, and provides an appropriate way of reordering 
perturbation theory so as to avoid unphysical low-energy divergences. At the same time 
it should be cautioned that for more realistic coupling schemes this model might not be 
appropriate, especially if a different ground-state symmetry is involved. Additionally, while 
the leading-order results of this model are independent of whether L-S or j - j  coupling is 
used, the effective degeneracy is less for L-S coupling, which may imply that more orders 
of 1/N are necessary. Nonetheless, this 1/N expansion scheme is implementable and its 
consequences should be explored. 

Previous studies [7,8, 10,121 have shown that this system shows Kondo-like behaviour 
not only in the integer-valent limits, but throughout its valence range, and shows the 
existence of a small energy scale separating the singlet many-body ground state from higher- 
lying magnetic states. This is to be contrasted with the P-f' problem where in the valence 
fluctuation range, the relevant energy scale separating the ground and excited states is of the 
order of the hybridization width. In addition, for the f'-P problem, the charge susceptibility, 
defined as the rate of change of the valence with bare f'-p level separation is found to be 
extremely small [ 101. 

While these earlier studies are illuminating, they have been restricted in their range of 
applicability, being either variational [7,9, IO], non-crossing approximation [ 121 or leading- 
order 1/N expansion [8]. There has been an exact numerical renormalization group study 
[ 1 I] of the case with a J = 4 f' state and a J = 2 P state which confirms the existence 
of a singlet ground state with a low-energy scale defining the low-temperature behaviour. 
However from a practical point of view, it is important to see how for the more approximate, 
but many-body standpoint, more readily implementable methods can provide a reasonable 
description of the ground-state features. Systematic corrections to these leading-order studies 
have not been explicitly evaluated, although the low-temperature extension to next order in 
1/N has been formulated by one of the authors [ 131 and one of the earlier variational studies 
[IO] did include an extra electron-hole term in the f' component of the wavefunction. The 
question naturally arises as to whether the 1/N corrections verify the robustness of this small 
energy scale found in the early studies. It was found that in the P-f' cerium Anderson model 
that although for most of the valence range the 1/N corrections yielded small changes in 
universal features, such as the susceptibility versus valence, qualitative changes were found 
in the integer-valent regime [14]. 

From a physical point of view it is important whether this small energy scale survives 
higher-order corrections since the energy separation between singlet and higher-lying 
magnetic states indicates how strong intersite magnetic interactions have to be in order 
to induce magnetic ordering. This is of particular relevance not only for HF systems but 
also from the point of view of the low magnetic ordering temperatures in uranium rock- 
salt systems. In this paper we calculate the 1/N corrections to the singlet-magnetic-state 
energy separation in the ground state. The integral equations determining the singlet energy 
have been derived elsewhere by one of the present authors [13], but they are unwieldy, 
involving solving integral equations for quantities that are functions of three continuous 
energy variables, and their numerical solution is very involved. In addition we formulate 
the theory for the magnetic states at zero temperature, which also require the solution of a 
set of integral equations. We shall cany this procedure out in terms of the reduced-basis 
diagonalization procedure of Gunnarsson and Schonhammer [15]. This yields systematic 
corrections in 1/N to the magnetic-state energy. 

J M Lundgraf and J W Rasul 
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In the following section we derive the integral equation for a general set of possible 
magnetic states in the fi-p Anderson model. We also recap the singlet-state equations 
and sketch a simple derivation of these. We analyse these equations with respect to their 
important low-energy features and extract the singular behaviour, leaving a set of integral 
equations that are solved. In the final section we present the numerical results for the 
singlet- and magnetic-state energies, the singlet-magnetic separation, the valence and the 
charge susceptibility as a function of ionic separation or valence. We compare the behaviour 
of the solutions with the asymptotic solutions of the integral equations, and compare the 
results for the singlet-magnetic energy separation with results of earlier perturbative scaling 
theory [8]. We also compare this singlet-magnetic energy separation with earlier variational 
theories [7, lo], and compare the effects associated with the 1/N corrections on universal 
features, such as the singlet-magnetic separation as a function of valence. 

Our starting point is the fl-fz Anderson impurity model, which is given in a j - j  
coupling scheme in the limit of zero j - j  coupling [8]: 

where the CL,,, represent electron creation operators in a state labelled by the momentum k 
and combined spin and angular momentum index m, with the bare energy e h .  The local 
states are represented by states In) with bare energies E,  and EZ for the f’ and fz states, 
respectively. The hybridization mixing-matrix element V is taken to be independent of k 
and m. 

2. Formulation of the integral equations 

In this section we derive the integral equations necessary to describe the energies of the 
magnetic and singlet states using the reduced-basis diagonalization procedure of Gunnarsson 
and Schonhammer [15]. 

2.1. Magnetic states 

We will give the derivation of the magnetic states using as the starting point the doublet (or 
n-tuplet) state 111) = $IO), where 10) denotes the filled conduction-electron Fermi sea. We 
will show later that more general descriptions of these states reduce essentially to the same 
set of eigenvalue equations. The n-tuplet couples to the states 

which have two electrons in the p states, one of which is coupled to a bare hole of 
wavevector k and the other which canies angular momentum p. At leading order in 1/N 
the total wavefunction is 
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Substituting into the Schrodinger equation leads to the coupled set of equations 

J M Landgraf and J W R a d  

where E$ = E1 - E r ,  E; = E2 - E r  denote the leading-order separations between the 
magnetic-state energy E r  and the bare f-state energies. Eliminating BO(€) leads to the 
simple transcendental equation 

E ;  = r iog[(E$ + D)/E;I (5) 

where r = p V Z ( N -  I), and D is the bandwidth. In the f’ limit (.E-& > r) equation (5) 
has a binding energy E$ = r log[(Ezl + D ) / E z l ] ,  and in the f2 limit has a binding energy 
E; = TK = Dexp(-I&ll/r). In the latter case this corresponds to a partial Kondo 
compensation of one of the stable moments, while in the former it yields only residual 
valence fluctuation corrections. 

At the 1 / N  correction level we must include first the f1 states 

where E is taken to be above the Fermi energy and E is taken below the Fermi energy. In 
the first state the moment is carried by the f electron while in the second state it is carried 
by the conduction electron. 

These couple to the f2 states 

which only differ from (6) in having an extra electron-hole-impurity operator pair. Again, 
in the former the moment is carried by the uncompensated impurity, while in the latter the 
moment is carried by the conduction electron. Note that in [ E ,  p, E .  E‘) the ordering of E 

and E‘ has no effect. Thus, to avoid double counting of the states we restrict the energies 
such that E < E‘. This consideration does not affect [ E ,  E .  E‘, p). 

In terms of these states the 1 / N  magnetic wavefunction takes the form 
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Applying the Schrodinger equation leads, after much algebra, to the following set of 
equations: 

€Ea. + V d K T C / 3 ( € )  = 0 

vg(E)+(E;ng-€++)yI (E .E)+  V J ; V T Z C 6 l ( E , € , E ' )  = o  

- VB(E) + (-E; - E + E)yz(E,  E )  + v m c s z ( E ,  E ,  E') = 0 

c 

N V ~  + (6% - E ) B ( E )  + V k i  ( E ,  E )  - yz(E,  -E)] = 0 
E 

6' (9) 
V - n ( E ,  E )  + (E& - E + E - ~ ' ) 6 1 ( E ,  E ,  E') = 0 

C' 

Vd'F?&(E,  E )  + % ( E ,  E')]  t (€$ - E t E -€')&(E, E, E') = 0. 

Here it is implied that sums over upper-case energies are for E > 0 while sums over lower- 
case energies are for E < 0. As before it is easy to eliminate the P coefficients in terms of 
the f' coefficients. It is traditional, for the leading-order theory, to scale V and N such that 
the combination r = p V 2 N  is finite. In  order for the 1 / N  corrections to be meaningful 
we must demand that the 1/N analysis gives the same results as the leading-order analysis 
when the 1/N state amplitudes y and 6 are set to zero. This forces us to take instead 
r = p V 2 ( N  - 1). We then obtain the following equation for the magnetic binding energy 
correct to order I J N :  

where the functions Q l ( E ,  E )  and Q z ( E ,  E )  are proportional to yl(E.  E )  and yz(E. E )  
respectively, and satisfy the equations 

where 

d y E  - E) = €; + E - - E  - r log[(€& + E - E  + D)/(-E%+ E --E)]. 

The fact that Q z ( E ,  E )  c( yz (E ,  E )  satisfies an integral equation reflects the fact that the 
angular momentum of the state IE, p ,  E) is carried by the electron with energy E.  This state 
couples to hole-impurity pairs of different energies as a result of the mixing into the P state 
IE, @, e ,  6'). As such, it parallels the development of both the leading and next-leading 
order in I j N  singlet state. 

Finally, expanding the right-hand side of (IO) to leading and next-leading order in 1 / N  
yields the following equation for the 1 / N  correction to the magnetic-state binding energy 
SE,,: 
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where E ;  and E; are the leading-order results, Qj ( E ,  E )  and Q z ( E ,  E )  are given by (11) 
and (12). and 6Emg is defined by the relation E”’ = E: + (1/N)6EW 

Similar magnetic states can, as remarked by Gunnarsson and Schonhammer [15], be 
written in the form 

J M kndgraf and J W Rasul 

[ E ( i ) )  = cy’c,,f,ilo) (14) 
Y 

where E, Cf) = 0, E, Cy)’ = 1 (these states can carry a moment or not depending on 
the specific choice of the Cf)). Despite the presence of the extra hole operator in I d i ) )  

the equations obtained by acting on this state with H are almost identical to the above 
formulation for I@). This can be easily seen f“ the results of acting on Is(”) twice with 
H h  to leading order in 1/N. 

1 
C 6 V  fJcpce.f~lo) = v m l d ,  8 ) )  

f , ” , d  
*U’ 

(15) 

The second term on the right-hand side of (16) is of the order of 1/N as compared to the 
first term and may be neglected in the leading-order treatment. Thus, the f’ states Id’)) 
do not couple to f’ states of other energies and the extra electron-hole operator in I&)) 
only contributes an extra singlehole energy to the leading-order magnetic-state energy (5) 
at leading order. The extension of these results to the order of 1/N and the effects of the 
second term on the right-hand side of (16) are described in the appendix where it is shown 
that the net effect of these terms is to raise the energies of the generalized magnetic states 
above those obtained from (8). 

2.2. Singlet state 
The integral equations derived earlier for the singlet ‘quasiparticle energy’ at finite 
temperahue 1131 can be readily derived using the GunnarssonSchonhammer reduced-basis 
method. The basis vectors we need to include are 

which are, at the leading order in 1/N, states corresponding to one and two f electrons 
respectively, and 
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which are the f' and P states, with one conduction-electron-hole pair included, to the order 
of 1 / N .  Within this (l/N)-order basis we may write the full wavefunction 

I&) = xa(~)le) + ~ B ( E . c ' ) I E , E ' )  + Y(E,E,E')IE.E,E')  
6 e,.' E,I ' ,E  

<<e' 

+ 6(E,€",E,E')IE.E",€,€'). 
f ,<',d', E 

e Cr' 

The first two terms in this wavefunction refer to the lowest-order f' and f components 
compensated by o n e  and two-hole operators with the same angular momentum. The thud 
and fourth terms are simple extensions of these to include a single electron-hole pair (with 
the same angular momentum among the electron-hole pair members). The energy variables 
are resliicted so as to be negative for hole operators and positive for electron operators. 

Acting with the Hamiltonian on these states, equating terms with the same operator 
products, and eliminating the P components leads to the coupled integral equations 

where 

d S ( E  - E - E') = 

and 

+ E - E - E' - r log[(EE + E - E - E' + D)/(E% + E - F - E')] 

Q(E, E ,  E') = y ( E ,  E ,  E ' ) / V [ V ~ I .  

The first of these is straightforwardly manipulated [I31 to yield 

with SE,i. defined by ES = E , j + ( l / N ) G E ~ . ,  Q ( E ,  E ,  E') determined by (21), and functions 
( Y O ( € )  taken at leading order in 1/N. 

3. Analytic properties of the integral equations 

Both the singlet and magnetic states involve the solution of integral equations with very 
similar smcture. These can be written rather simply, in terms of an operator K ( x )  defined 
such that 

K ( x ) f ( x )  = d( -x )  f ( x )  - r 
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so that for the magnetic state we are required to solve 

while for the singlet 

The special feature of this kernel is that it involves the leading-order binding energy, which 
is itself determined from the condition K(E)(Yo(E)  = 0. Hence we have the task of solving 
separate inhomogeneous integral equations, knowing that in the low-energy limit we have 
to recover consistency with the homogeneous equation. As a result the functions Q and Q z  
have to be singular in the limits E - E  - E‘ = 0 and E - e  + E% - E& = 0 respectively. This 
singular behaviour can be extracted by multiplying (24) and (25) by CYO(E) and integrating 
over e from - D  to zero after which we obtain for the singlet function Q 

together with a correction regular in E - E ,  where 

The quantity E - E represents a boson-like energy, referring as it does to the energy of an 
electron-hole pair, This energy never becomes negative. 

As far as the magnetic-state function is concerned, a similar analysis yields 

where 8 = E.& - <;b. We note that the contribution from Q2 to the magnetic-state binding 
energy involves integrating over negative values of E - 6 as well as positive ones. A 
different kind of singularity arises in Q z ( E ,  E )  as E - E vanishes, since dm(E - E )  itself 
vanishes in this limit. A solution can be found to leading logarithmic order by iterating the 
Neumann series. We find in this way that 

where Ec is a cut-off of the order of r. The point of this relation is that the integral 
l!”, de Q z ( E ,  E )  converges to a finite limit in the low-E region and that therefore numerical 
evaluation of Qz at very low energies, where the integral equation is not well behaved, is 
not problematic. 
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4. Numerical procedures 

The integral equations for Q(E, E‘, E )  and /&(E, E )  must be treated specidly because 
Neumann’s series does not converge in the regions where the kernel of the integral equations 
are nearly the same as the kernel for the singlet equation. For both cases the kernel of the 
integral equation has the form 

K b , Y )  = Mff - x  - Y )  (2% 

where x ,  y range from --D to zero and a is always positive. We approximate this K ( x ,  y )  
with its Taylor-series expansion. Because a can be small, the Taylor series only converges 
for a limited range, so we actually expand K ( x ,  y )  about several different points. 

where for a given i, yi is the value of y about which the kernel is expanded and ri and ri - l  
are chosen so that the range in which the 0 functions do not vanish y - yi < (Y - yi and 
the series converges. This kernel has the form 

We then define ani = f, dy Q(y)Yni(y),  and find after substituting into the integral 
equation 

the linear system of equations 

where 

We then solve the linear system for ani (with an appropriate l i t a t i o n  on the n summation) 
and obtain 

We note that in the case of the singlet 1 / N  calculation (Y = E& + E - E .  We used an LU 
decomposition method [ 161 for solving the linear system (33). This method decomposes 
the matrix 6:! - A;’ into the product of a lower triangular matrix and an upper triangular 
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matrix and uses the fact that the solutions of triangularmatrix equations are trivial. For 
this method the change of variables to E - E and E + E resulted in a very large increase 
in computational efficiency. This is because the kernel of equation (21), and hence A:/, 
only depends upon E - E and the matrix 6;’ - A;’ must then be decomposed a number of 
times equal to the numbervV, of sampled points, rather than N: times. Once the matrix has 
been decomposed, the linear system (33) may be quickly solved for each of the sets b.i. 
This change of variables has the additional advantage that the form of the transformation 
causes the contribution of the singular region, when the kernel for Q ( E .  E’, E) is very near 
the kernel for the leading-order wavefunction, to become finite. In the case of the magnetic 
equation Q! = E; + E .  The above singularity in these equations we treat as a principal part 
integration by cutting off the calculation 10-3r to either side of the pole. 

J M Landgraf and J W Rasul 

5. Results 

Before examining the numerical results we note that a very useful qualitative guide to the 
solution of the problem can be gained from looking at the equations for Q and QZ at large 
energy arguments. We find that in this limit 

which, afier substituting in (13), yields 

This can be further approximated by dropping the logarithmic term in dm(E - e) 

m,, = [-2r2/(~g + r ) i i o g ( ~ / ~ , )  (38) 

where Ec is a cut-off of the order of r. Similarly, for the singlet state we find that 

Inserting this expression into the right-hand side of (22) results in 

which can be further approximated by integrating over E and dropping the logarithmic 
dependence on E and E’ in favour of the extremely peaked energy dependence of cio. Then 
we apply the identity 

which can be easily obtained from the ground-state wavefunction using the definitions of the 
valence nt = (+o[ Cm fJfml$o). We find that to leading logarithmic order in the bandwidth 

GE,i. = 2r(nr - 1) log(D/E,) (42) 
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where E, is again an unspecified cut-off of the order of r. While the above estimates are 
mainly of qualitative use, we shall see that they allow a straightforward semi-quantitative 
representation of the 1 / N  corrections. In figure 1, we show the numerical solutions for 
SEmas and &Ed. as a function of EZI for two representative bandwidths D = 50 and 
D = 7.03 together with the asymptotic estimates for these quantities obtained from (37) 
and (40). We note that the asymptotic results for these energies show the same qualitative 
features throughout the valence regime that for D/  r = 50 is covered by taking E21 values 
from O(n: = 1.34) to -7(n: = 1.94) and for D/r = 200 is covered by taking E21 
values from 0 (np = 1.21) to -8 (n: = 1.96). The agreement is better for the magnetic 
states since the corrections due to the integral equations only apply to the contribution of 
Q 2  in (13). Furthermore we find that the separation SE,, - S E d ,  is small and positive 
in the f1 regime (E21 Y 0), increases in the centre of the valence regime (E21 N -3), 
and changes sign as we approach the P limit (E21 Y -5). The change of sign between 
the f’ and d limits can be understood by studying the perturbative scaling calculations 
of the Kondo temperature in those limits, since we expect the singlet-magnetic energy 
difference to correspond to this energy scale in the local moment limits. Taking ? and T* 
as the renormalized ionic separations in the fl and d limits respectively, we find that in 
the f2 limit TK = Do(r/Do)”N(T/D)2/Nexp(E21/r) [SI, so the 1/N expansion of this 
quantity yields a negative log(D) contribution. On the other hand the f1 limit has a Kondo 
temperature TK = D(r/D)’/N(T*/D)2(1-2/N) exp(-Ezl/r) for which the 1/N term has a 
positive log D conhibution. Hence a change of sign in the intermediate-valence regime is 
to be expected. 

Turning to a more detailed examination of the numerical results we show in figure 2 the 
1/N corrections to the singlet-magnetic energy difference, together with the leading-order 
result for D = 50 and D = 200. Again, the numerical results for the 1/N corrections 
are consistent with the approximations, showing an increase on leaving the f’ regime, a 
maximum in the mixed-valence regime, followed by a reduction, leading to a change of 
sign in the d limit, again turning over and vanishing asymptotically in the extreme d limit. 

Combining the leading- and next-leading-order results, we show in figure 3 the full 
singlet-magnetic separation for N = 6,8, 14, and CO. We note that the maximum positions 
are shifted over to smaller values of E Z I ,  and that the values of E,,, - Es are reduced in the 
fL limit from the infinite degeneracy limit, consistent with scaling theory. The central result, 
however, concerns the actual value of the maximum singlet-magnetic splitting that results 
from the next-leading 1/N calculation. Even for the smallest degeneracies the increase 
in peak height is no more than 20% over the zeroth-order calculation. This is important, 
since one might expect the extra logarithmic (in D) contributions that result from the extra 
particlehole states to completely dominate over the small energy scale that appears at 
leading order. This does not happen, because of a cancellation of part of this logarithmic 
term between the singlet- and magnetic-state energies. The small energy scale therefore 
appears to be robust, with a maximum value of - 12% of the hybridization width for the 
chosen bandwidth values. Since, as we have seen, the bandwidth dependence of the 1/N 
coqections is essentially logarithmic we do not expect a strong dependence of the peak 
value on bandwidth, for realistic values. 

While this constitutes the essential physical result of our calculation, the abundance of 
parameters in the Anderson model makes it desirable to represent the results in terms of 
physical parameters. For example a central feature of the P-f’ model is the functional 
dependence of the susceptibility on the valence [14]. This facilitates, for the to-f’ model, 
a detailed comparison between the 1/N method and exact results [14]. For our model, 
following Evans and Gehring [lo], we would expect the susceptibility to be inversely 
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0 I I I I I I I I 

(4 
-1 1 

-6 
-3 -2 - 1  0 k5- E, $ -9 -8 -7 -8 

Figure 1. The I/N corrections to the singlet (full curve) and mametic (long dashes) energies, 
SEIN = E - Eo, as a function of ionic splitting for (a )  D = 50 and (b)  D = 200. Also shown 
in each m e  are the approxidons (37) and (40) for the IIN corrections to the singlet-state 
(doh) and magnetic-state (shon dashes) energies. 

proportional to the singlet-magnetic splitting. Therefore the universal properties of the 
model would be best expressed as a plot of the splitting versus total (leading- and next- 
leading-order valence). We show this in figure 4. We note that the maximum of the splitting 
is shifted to slightly higher values of the valence rather than to the centre, as is found in 
variational [lo] and NCA treatments of the minimal-degeneracy model. We ascribe this, 
in part, following Evans and Gehring’s observation of the same effect in their variational 
calculation [IO], to the degeneracy of the f states. In addition we expect that our inclusion 
of the E particle-hole states enhances this effect. 
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.2 - 

L 
I 

w’ 0 -  
I 

9 
-.l - - 

- 

-.3 I I I I I I I 
-8 -7 -0 -5 -4 -3 -2 -1 0 

E, - E, (r) 
Figure 2. The I,” c o d o n s  b ihe single(-magnetic energy difference (full curve) as a 
function of ionic sepvation for (a) D = 50 and (b)  D = 200. Also shown are the leading-order 
results (dashed curve). 

Another issue we have to be concerned about is the behaviour of the singlet-magnetic 
separation close to the fL limit. From figure 4 it is apparent that the binding energy is 
reduced below the leading order value, in an analogous manner to the behaviour close to 
nf = 1 in the P-fl model [14]. We have problems in picking out the behaviour close to 
nr = 2 in our calculation, because of the tiny energy scales involved in this limit. However, 
we can see in figure 5 that the total valence itself, as a function of ,921, approaches the 
ny = 2 limit more slowly than the leading-order calculation on account of the finite rlE21 
corrections that are obtained at the 1 / N  level [SI. 

Finally, in figure 6 we show the charge susceptibility xch = -anf/aEzl as a function 
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Figure 3. Total separation behveen the magnetic- and singlet-state energies as a function of 
ionic sepantion to next-leading order in 1 /N  for N = m (fuU curve), N = 14 (loog dashes), 
N = 8 (shod dashes), and N = 6 (dots), for (a) D = 50 and (b) D = 200, 

of the total valence. We find a maximum value of approximately 0.1, with only a slight 
deviation of the peak height from the 1 / N  corrections. We note that the peak position is 
shifted to smaller values. The results are consistent with the estimates by Evans and Gehring 
[lo] of this quantity and confirm that for the model under study, the spin susceptibility of 
approximately I/(& - E$) is at least two orders of magnitude larger than the charge 
susceptibility. 
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Figure 4. Total separation bemen the magnetic- and singlet-stale energies as a hnction of total 
valence for N = m (full curve), N = 14 (long dashes), N = 8 (short dashes). and N = 6 
(dots), for (0) D = 50 and (b) D = 7.00. 

6. Summary and conclusions 

In this paper we have systematically studied the ground-state energy and related properties 
such as the valence and charge susceptibility of an N-fold-degenerate Anderson model 
fluctuating between f' and fz configurations to next-leading order in the 1/N expansion. 
Our motivation was to see whether the essentially unique features of the problem that appear 
at leading order [SI (or in related variational treatments of less degenerate models [7, lo]) 
persist in the presence of the full set of particbhole excitations. For the cerium P-f' 
problem it is known that these excitations affect certain individual properties, such as the 
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Figure 6. Charge susceptibility as a function of total valence for N = m (full curve), N = 14 
(long dashes). N = 8 (short dashes), and N = 6 (dois), for D = 50. 

ground-state energy, but not universal features. We formulated the problem in the restricted 
basis method of Gunnarsson and Schijnhammer [15] and derived integral equations for the 
singlet- and magnetic-state energies, which were solved numerically. 

We found that the singlet-magnetic energy separation was little changed from its leading- 
order value, despite large individual 1/N corrections to the singlet- and magnetic-state 
energies. These 1 / N  corrections changed both sign and curvature through the full valence 
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region, consistent with earlier scaling results in the local moment limits. As a function of 
the total valence the peak in the singlet-magnetic separation was shifted to higher values of 
the valence, on account of the higher degeneracy of the P state. The valence approached 
the P limit more slowly than the leading-order result because of the inclusion of non- 
analytic corrections known from scaling theory. The charge susceptibility remained small, 
being hardly affected by the 1/N corrections, and even in the middle of the valence regime 
remained roughly two orders of magnitude less than the spin susceptibility. 

Overall, the results of our systematic 1 / N  calculation confirm the existence of a small 
energy scale (- 0.lr) separating the many-body singlet ground state from higher-lying 
magnetic states, as well as the relative unimportance of charge fluctuations compared with 
spin fluctuations in impurity models where both atomic configurations are degenerate. These 
results should be of importance in assessing the ease with which intersite effects can stabilize 
magnetic ordering in concentrated actinide alloys and compounds. 

Appendix 

It may be argued that the result that the singlet state (19) has lower energy than the magnetic 
state (8) is due to the fact that if treated as variational wavefunctions the singlet state has a 
larger parameter space than the magnetic states. It is indeed the case that the lower energy 
of the singlet state is due to the exfra energy which is gained via hybridization with the 
larger number of non-interacting basis states that are included in (19). In this appendix 
we present two arguments that, at least in the framework of the formal 1/N expansion, 
the reduced parameter space of the magnetic states is a necessary result of the form of the 
interactions rather than an arbitrary one. 

The basic idea is that any conduction-holef-electron pair term, for which the conduction 
hole and the f electron do not have the same magnetic index, cannot be either created or 
destroyed by the mixing term of the Hamiltonian (1). Any basis state that contains such 
unscreened terms may only couple to other basis states via the destruction or creation of 
other screened pairs, so that the effect of the unscreeened pairs is simply the addition of 
the single-particle energies to the energy of the basis state. The lowest such state will be 
obtained by choosing the energy of the conduction hole to be at the Fermi surface. The 
conduction-holef-electron term may then be replaced in the definition of the basis state by 
a single f electron operator and the magnetic-state definition (8) results, 

A more concrete description of this may be obtained by constructing magnetic states 
with the same size parameter space as the singlet states. This can easily be done to leading 
order by using the states defined in section 2.1, Idi)) (14) and IC', 6"') (15): 

G.6' 

By acting on this wavefunction with the Hamiltonian we obtain 

[ e ;  - E - r log[(€; - E + W ( E ;  - E)IIOI(')(E) = o (A21 

and we note that this equation cannot give us the form of a('). In fact, the proper 
interpretation of (A2) is that the state (Al) is really just a superposition of eigenstates 
(at leading order in l /N)  
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where each of the eigenstates (A3) have energy E: - E where E; is the normal leading- 
order magnetic state energy and E is (as always) negative. Here again the lowest of the 
'magnetic' states gives equivalent results to the leading-order analysis in section 2.1. 

When we examine the validity of these results to next-leading order in 1/N a 
complication arises. Using the language of the first argument presented above, when 
there are several conduction-hole-f-electron pairs present, and if one or more of them 
are unscreened, it may happen that terms such as c,, fJc,,, f j l 0 )  occur. In such a term it 
is ambiguous whether the hole with energy E or E' is paired with the f electron in channel 
U. This ambiguity leads to a (l/N)-order mixing between each of the magnetic states with 
different energies (A3). While all of the off-diagonal matrix elements of the Hamiltonian 
to leadiig order are negative, these additional 1/N terms, (di1IH[c+ are positive. We 
shall see that when treated in the 1/N expansion, these positive matrix elements lead to an 
increase of the magnetic state energy with respect to the magnetic state energy considered 
in the text. 

In a completely variational approach the opposite is the case. Because the leading-order 
magnetiostate energy obtained in the text is exactly equal to that obtained variationally 
by restricting the basis states for the wavefunction to states of the form and Is, O")), 
and because expanding the solution space in a variational calculation can only reduce the 
energy, we see that the magnetic energy is lowered despite the positive mixing terms. Even 
so. because the additional off diagonal matrix elements are positive, and because they are of 
order 1/N, the energy reduction will be quite small. In particular, the magnetic energy will 
remain larger than the singlet energy, because in that case the equivalent terms are negative 
and of order unity. While the 1/N expansion technique and variational calculations lead 
to different solutions, the central result-that the singlet state is lower than the magnetic 
state-holds for both approaches. 

We turn now to the evaluation of the 1/N corrections to (Al). We must include the f' 
basis states 
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and the fz basis states 

where in the second of these the energy variables E' and E" are restricted to E' < E". 
These states are the straightforward generalizations of (6) and (7). We then apply the time- 
independent Schradinger equation to the most general wavefunction with the above basis 
states and obtain 
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where Ql and Qz are given by 

dm(E - E -E')QI(E, E'* E) = d')(E)/(E% - E  - E ' )  649) 

6410) 
f o  . .. Q ~ ( E , ~ ' , E )  

.- 
E; + E  - E -E' - E ~ ~ '  

The above set of equations are a coupled set of integral equations that determine the energy 
of the magnetic states. 

In order to solve these equations using the 1/N expansion one must first solve the 
equations to leading order. As discussed previously, the leading-order solution separates 
into different eigenstates for each E. Because we are working at zero temperature this 
requires that the leading-order magnetic-state equation is simply the lowest of these states. 
Hence, @(E) = (YoS(E) where a(€) is the Dirac delta function, and rro is a constant 
determined by the normalization and is precisely the same quantity as in the formulation 
in section 2.1. Here the reason that the 1/N and variational techniques lead to different 
results is apparent. In both cases, the same set of basis elements is used to each order 
in 1/N. However, in the 1/N expansion the wavefunction in the higher-order space is 
determined by the lower-order wavefunction, while in a variational approach one is faced 
with the problem of coupled many-dimensional integral equations. 

The assumption that CY!) = CYOS(E) drastically simplifies equations (A8) and (AS). After 
expanding to next-leading-order in 1/N we obtain 

where, in this case, Ql and Qz are given by (11) and (12). This differs from the earlier 
result only in the first term on the right-hand side. This term has the effect of raising the 
energy correction of the magnetic state by a value CEf"o/r(E% + r), which vanishes in 
both integer-valent limits. 

Thus, we have shown in this appendix that to next-leading-order in 1/N such generalized 
magnetic states, with parameter spaces that are the same as for the singlet state, have in fact, 
energies higher to next-leading-order in l /N than those of the magnetic states considered 
in the text. 
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